Remarkable Enhancements of Isomerization and Oxidation of Radical Cations of Stilbene Derivatives Induced by Charge-Spin Separation

Sachiko Tojo, Kazuhiro Morishima, Akito Ishida, Tetsuro Majima,* and Setsuo Takamuku*

The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567, Japan

Received May 1, 1995

As typical reactions of radical cations of aromatic olefins, cis(c)-trans(t) isomerization, dimerization, and addition of a nucleophile are well-known.¹ However, factors which control the relative rates of these reactions are unclear. No unimolecular c-t isomerization occurs in stilbene radical cation (St^{+}) ,² while dimerization³ of St⁺⁺ with St occurs with the rate constant of $k_d = (3.5 -$ 3.9) \times 10 8 M^{-1} s^{-1} 3b,c to yield a $\pi\text{-dimer}$ radical cation $(\pi$ -St₂⁺⁺) which converts to a σ -dimer radical cation (σ - St_2^{++} decomposing to *t*-St⁺⁺ and St as final products.^{3c} It is reported that t-St⁺⁺ reacts with superoxide molecule⁴ at the rate constant of $k_{\rm so} = 1.9 imes 10^9 \ {
m M}^{-1} \ {
m s}^{-1}$ near to the diffusion rate constant,^{4c} while t-St⁺⁺ has little reactivity toward O_2 .^{3a,4,5} On the other hand, we have found that both unimolecular c-t isomerization and oxidation of St^{+} derivatives substituted with a *p*-methoxyl group $(p-CH_3O)$, as an electron-donating substituent, proceed with the rate constants of $k_{
m i} = 4.5 imes 10^6 - 1.4 imes$ 10^7 s^{-1} and $k_{\text{O}_2} = (1.2-4.5) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$, respectively (Scheme 1). On the basis of the two types of reactions (c-t isomerization and oxidation) of eight St⁺⁺ derivatives $(RCH=CHC_6H_5: 1, R = C_6H_5; 2, R = 4-CH_3C_6H_4; 3, R =$ $4-CH_3OC_6H_4$ (= An); 4, R = 2,4-(CH_3O)_2C_6H_3; 5, R = 3,4- $(CH_3O)_2C_6H_3$; 6, R = 3,5-(CH_3O)_2C_6H_3; 7, AnCH=C- $(CH_3)C_6H_5$; 8, AnCH=CHAn),⁶ it is found that separation and localization of positive charge and an unpaired electron play an important role in increasing the reac-

(2) (a) Lewis, F. D.; Bedell, A. M.; Dykstra, R. E.; Elbert, J. E.; Gould, I. R.; Farid, S. J. Am. Chem. Soc. **1990**, *112*, 8055 and references cited

(6) c- and t-2--6 were prepared by the Wittig reaction.

tivities and that the reactivities of radical cations in solution are explained in terms of distonic radical cations.7,8

The reactions of radical cations $1^{+}-8^{+}$ were investigated using a pulse radiolysis technique in 1,2-dichloroethane (DCE) at room temperature.9 The transient absorption spectra immediately after the electron pulse were assigned to *c*- and $t-1^{+}-8^{+}$ formed from the capture of the hole generated in the initiation step (Table 1). cand $t-2^{*+}-8^{*+}$ show two typical absorption bands in the range of 400-600 and 700-1000 nm assigned to $D_2 \leftarrow$ D_0 and $D_1 \leftarrow D_0$ transitions, respectively, similarly to 1^{•+}.¹⁰ However, the absorption peaks of both shorter and longer wavelength bands of $3^{+}-5^{-}$ and 8^{+} shift to longer wavelengths with higher intensities than those of 1.+ (Table 1). $c-6^{++}$ shows the absorption peak with extremely low intensity similar to that of 1,3-dimethoxybenzene radical cation.¹¹

The rate constants of unimolecular c-t isomerization (k_i) were calculated from the formation of $t-1^{*+}-8^{*+}$ bands at the absorption peaks of D_2 (λ_{max}) at 5 mM of c-1-8 where unimolecular c-t isomerization was little affected by dimerization of $c-1^{+}-8^{+}$ and c-1-8 (Table 1). The rate constants of dimerization (k_d) were measured from the dependence of the decay of $1^{++}-8^{++}$ bands at λ_{max} on the concentration of 1-8 (5-100 mM), while the rate constants of oxidation (k_{O_2}) were obtained from the dependence of the decay of c- and t-1^{•+}-8^{•+} bands on the concentration of O_2 (2-14 mM). These rate constants thus obtained are summarized in Table 1.

Unimolecular c-t isomerization was observed in $c-3^{*+}-$ **5**⁺ and c-**8**⁺ with p-CH₃O ($k_i = 4.5 \times 10^6 - 1.4 \times 10^7 \text{ s}^{-1}$), but not in $c-1^{+}$, $c-2^{+}$, and $c-6^{+}$ without $p-CH_3O$. No isomerization or $k_i < 10^6 \text{ s}^{-1}$ was observed in c-7⁺⁺ with p-CH₃O and a methyl substitution on the olefinic carbon. The oxidation with O_2 was also observed in $t-3^{*+}-5^{*+}$ and $t-7^{+}$ with $p-CH_3O$ ($k_{O_2} = (1.2-4.5) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$), but not in $c-1^{+}$, $c-2^{+}$, and $c-6^{+}$ without $p-CH_3O$. No oxidation or $k_{O_2} < 10^6 \text{ M}^{-1} \text{ s}^{-1}$ was observed in $t-8^{++}$ with two $p-CH_3O$. The dimerization was observed in $1^{++}-3^{++}$ and $t-6^{--}$ $(k_{\rm d} = (2.0-4.3) \times 10^8 \ {\rm M^{-1} \ s^{-1}}).^{12}$ Since the dimerization occurs even in 3^{+} with the large k_d value but not in 4^{•+}, 5^{•+}, and 7^{•+}, it is suggested that the dimerization involves initial formation of a π -complex with overlapping of two benzene rings and that the π -complex formation

^{(1) (}a) Fox, M. A., Chanon, M., Eds. Photoinduced Electron Transfer; Elsevier: Amsterdam, The Netherlands, 1988. (b) Mattes, S. L.; Farid, S. In Organic Photochemistry; Padwa, A., Ed.; Marcel Deckker: New York, 1983; Vol. 6, pp 233-326. (c) Lewis, F. D. In *Photoinduced Electron Transfer*; Fox, M. A., Chanon, M., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; Part C, Chapter 4. (d) Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. **1992**, 25, 233. (e) Parker, V. D. Acc. Chem. Res. **1984**, 17, 243. (f) Eberson, L. Adv. Phys. Org. Chem. **1982**, 18, 79. (g) Schepp, N. P.; Johnston, L. J. J. Am. Chem. Soc. **1994**, 116, 6895 and references cited therein.

^{1.} K.; Farld, S. J. Am. Chem. Soc. 1990, 112, 3035 and references cited therein. (b) Kuriyama, Y; Arai, T.; Sakuragi, H.; Tokumaru, K. Chem. Phys. Lett. 1990, 173, 253.
(3) (a) Lewis, F. D.; Petisce, J. R.; Oxman, J. D.; Nepras, M. J. J. Am. Chem. Soc. 1985, 107, 203. (b) Kuriyama, Y.; Sakuragi, H.; Tokumaru, K.; Yoshida, Y.; Tagawa, S. Bull. Chem. Soc. Jpn. 1993, 66, 1852 and references cited therein. (c) Tojo, S.; Morishima, K.; Ishida, A.; Majima, T.; Takamuku, S. Bull. Chem. Soc. Jpn. 1995, 68, 055 958

^{(4) (}a) Eriksen, J.; Foote, C. S. J. Am. Chem. Soc. **1980**, *102*, 6083. (b) Yamashita, T.; Tsurusako, T.; Nakamura, N.; Yasuda, M.; Shima, (b) Jallasinia, I., Isurusaki, I., Hananura, I., Tasuda, H., Shinia, K. Bull. Chem. Soc. Jpn. 1993, 66, 857. (c) Tsuchiya, M.; Ebbesen, T. W.; Nishimura, Y.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1987, 2121.
(d) Konuma, S.; Aihara, S.; Kuriyama, Y.; Misawa, H.; Akaba, R.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1991, 1897.

⁽⁵⁾ Tokumaru and his co-workers proposed that the oxidation depends on the structures of olefins, since the rate constant of k_{0_2} varied in the wide range, $k_{0_2} = 1.3 \times 10^6$, 7.2×10^5 , and $2.6 \times 10^8 \,\mathrm{M^{-1}}$ s⁻¹ for *t*-1⁺⁺, *t*-8⁺⁺, and radical cation of (*E*)-2,3-diphenyl-2-butene, respectively, in laser flash photolysis of the olefin and 9-cyanoanthracene in DMSO.4c

^{(7) (}a) Yates, B. F.; Bouma, W. J.; Radom, L. Tetrahedron 1986, 22, 6225 and references cited therein. (b) Hammerum, S. Mass Spectrom. Rev. 1988, 7, 123. (c) Stirk, K. M.; Kiminkinen, L. K. M.; Kenttämaa, H. I. Chem. Rev. 1992, 92, 1649.

⁽⁸⁾ Tojo, S.; Toki, S.; Takamuku, S. J. Org. Chem. 1991, 56, 6240. (9) The sample solutions was irradiated with an 8-ns pulse of 28 MeV electrons.

⁽¹⁰⁾ Shida, T.; Hamill, W. J. Chem. Phys. 1966, 44, 2375.

⁽¹¹⁾ Takamuku, S.; Komitsu, S.; Toki, S. Radiat. Phys. Chem. 1989,

^{34. 553.} (12) The dimerization was also observed in $t-8^{++}$ on the basis of electrochemical measurements, although $k_{\rm d} = (3.4-5) \times 10^3 \ {
m M}^{-1} \ {
m s}^{-1}$ was too small to be observed under the present conditions in this study. Steckhan, E. J. Am. Chem. Soc. **1978**, 100, 3526. Burgbacher, G.; Schaefer, H. J. J. Am. Chem. Soc. **1979**, 101, 7590.

Table 1. Absorption Peak of D₂ of 1⁺⁺-8⁺⁺ in DCE and Rate Constants for the Reactions of 1⁺⁺-8⁺⁺ in Pulse Radiolyses in DCE at Room Temperature^a

	<i>cis</i> (<i>c</i>)					trans (t)			
stilbene	λ_{max}/nm	$\epsilon_{\lambda}/\mathrm{M}^{-1}~\mathrm{cm}^{-1}$	$k_{ m i}/{ m s}^{-1}$	$k_{\rm d}/{ m M}^{-1}~{ m s}^{-1}$	$k_{\rm O_2}/{ m M^{-1}~s^{-1}}$	$\lambda_{\rm max}/{\rm nm}$	$\epsilon_{\lambda}/\mathrm{M}^{-1}~\mathrm{cm}^{-1}$	$k_{ m d}/{ m M}^{-1}~{ m s}^{-1}$	$k_{\rm O_2}/{\rm M^{-1}~s^{-1}}$
1.+	515	18 000	Ь	$3.9 imes 10^8$	с	480	65 000	$3.9 imes 10^8$	с .
2 •+	520	30 900	Ь	$3.4 imes10^8$	с	490	80 900	$4.3 imes 10^8$	с
3•+	530	$13\ 200$	$4.5 imes10^6$	$2.0 imes10^8$	d	470,500	$39\ 200,\ 74\ 800$	$3.0 imes10^8$	$4.5 imes10^7$
4 •+	530	d	$1.3 imes10^7$	d	d	480	10 5000	с	$4.0 imes10^7$
5 •+	540	d	$1.4 imes10^7$	d	d	480	84 600	с	$1.2 imes10^7$
6• +	520	3270	Ь	d	с	460, 510	24 500, 20 800	$3.4 imes10^8$	с
7 •+	450, 500	8820, 9710	Ь	d	$2.5 imes10^7$	440, 490	18 400, 29 400	с	$2.8 imes10^7$
8•+	500, 570	d	$5.5 imes10^6$	d	с	480, 540	33 100, 76 000	с	с

^a The absorption peaks of $D_2(\lambda_{max})$ of $1^{*+}-8^{*+}$ in DCE. The molar absorption coefficients (ϵ_{λ}) were estimated from the optical density at λ nm and the optical length of 1 cm with assumption of concentration of 8×10^{-6} M for $2^{*+}-8^{*+}$ which was measured for $t-1^{*+}$ on the basis of $\epsilon_{480} = 6.5 \times 10^4$ M⁻¹ cm⁻¹ in DCE. k_i , calculated from the formation of t^{*+} at 5 mM of c-1-8; k_d , measured from the dependence of the decay of $1^{*+}-8^{*+}$ on the concentration of 1-8; k_{0_2} , obtained from the dependence of the decay of c^{*+} or t^{*+} on the concentration of 0_2 . $b k_i < 10^6$ s⁻¹ since the formation of t^{*+} was not observed. $c k_d$ and $k_{0_2} < 10^6$ M⁻¹ s⁻¹ since no dependence of decay of c^{*+} or t^{*+} on the concentration of $c, t, or O_2$. d Not determined.

is inhibited by steric hindrance of substituents on benzene rings and olefinic carbons.

On the basis of these experimental results of k_i and k_{0_2} it is clearly shown that p-CH₃O as an electrondonating substituent on the benzene ring changes remarkably the reactivities of $1^{+}-8^{+}$. It is considered that a resonance structure (B) as shown in Scheme 2 for $c-3^{++}$ contributes to the electronic states of $3^{\cdot+}-5^{\cdot+}$, $7^{\cdot+}$, and 8^{++} with p-CH₃O. Positive charge is more localized on oxygen of p-CH₃O, while the unpaired electron density is more localized on the olefinic β -carbon in **3**⁺-**5**⁺, **7**⁺ and 8^{++} with *p*-CH₃O (charge-spin separation) than in 1^{++} and 2^{++} without p-CH₃O. Alternatively, oxygen of p-CH₃O and the olefinic β -carbon participate considerably to SOMO of 3^{•+}-5^{•+}, 7^{•+}, and 8^{•+}. Since the energy barrier for the unimolecular c-t isomerizations decreases with increasing the single bond character in the central C=C double bond, the reactivity of the isomerization increases in 3⁺⁺-5⁺⁺, 7⁺⁺, and 8⁺⁺. Since unpaired electron density is localized on the olefinic β -carbon, the reactivity of the oxidation increases in $3^{\cdot+}-5^{\cdot+}$, $7^{\cdot+}$, and $8^{\cdot+}$. Consequently, p-CH₃O in $3^{\cdot+}-5^{\cdot+}$, $7^{\cdot+}$, and $8^{\cdot+}$ causes enhancement of the reactivity due to the charge-spin separation, like distonic radical cations carrying spatially separated positive charge and an unpaired electron.

Product analyses were performed in γ -radiolyses of c-3-5 in Ar- or O_2 -saturated DCE at room temperature.¹³ t-3-5 were formed in high yields in γ -radiolyses of c-3-5 in Ar-saturated DCE, and 4-methoxybenzyl phenyl ketone was regioselectively formed in γ -radiolysis of t-3 in O_2 -saturated DCE, although the details will be published elsewhere. These results are consistent with the order of k_i and k_{O_2} and the charge-spin separation induced by p-CH₃O in $3^{*+}-5^{*+}$, 7^{*+} , and 8^{*+} .

The unimolecular c-t isomerization of $c-7^{++}$ or oxidation of t-8⁺⁺ did not occur, although both 7⁺⁺ and 8⁺⁺ have p-CH₃O. These are possibly explained in terms of steric hindrance for the twisting and spin density on the olefinic carbon, respectively. Methyl substitution on the olefinic carbon in $c-7^{+}$ provides more steric hindrance for the twisting about the C=C double bond than in $c-3^{+}$. The density of unpaired electron on the olefinic carbon in 8.+ with two symmetrical p-CH₃O is lower than in 3^{+} . The unimolecular c-t isomerization or the oxidation of $c-6^{++}$ did not occur. It should be noted that $c-6^{+}$ has the absorption peak at 520 nm with extremely low intensity similar to that of 1,3-dimethoxybenzene radical cation. These results may be interpreted by a twisted structure with the 3.5-dimethoxyphenyl ring rotating against the C=C double bond, since a structure (B) is not possible in $c-6^{++}$ having $m-CH_3O$.

Tokumaru and his co-workers reported $k_i = 3 \times 10^5$ s⁻¹ for radical cations of c-4,4'-dibromostilbene (c-9⁺⁺) and c-4,4'-dimethylstilbene (c-10⁺⁺) and $k_i > 3 \times 10^5$ s⁻¹ for c-8^{++ 2b} and proposed that c-t isomerization might be accelerated by reduction of the electron density on the unsaturated linkage induced by the substituents on the basis of lower coupling constants of the α -H of t-9 and t-10 having p-substituents than that of t-1 itself in ESR studies.¹⁴ They also proposed that the oxidation depends on the structures of olefins, since the k_{0_2} values varied in the over a wide range.^{4c,d} The k_i values for c-3⁺⁺-5⁺⁺ and c-8⁺⁺ are 1 or 2 orders larger than those for c-9⁺⁺ and c-10^{++ 2b} as shown in Table 1. Remarkable enhancements of the isomerization by p-CH₃O are explained by chargespin separation in c-3⁺⁺-5⁺⁺ and c-8⁺⁺.

The present work is the first example to clarify that the reactivities of stilbene radical cations are controlled predominantly by charge-spin separation induced by p-CH₃O, and it is suggested that distonic radical cations can be acceptable to explain reactivities of radical cations even in solution.

Acknowledgment. This work was partly supported by a Grant-in-Aid (Nos. 05453121 and 07455341) from the Ministry of Education, Science and Culture of Japan.

JO950798I

⁽¹³⁾ $\gamma\text{-Radiolyses}$ of the sample solutions were performed by a ^{60}Co γ source; concentration of substrate, 10 mM. 3c

⁽¹⁴⁾ Bonazzola, L.; Michaut, J.-P.; Roncin, J.; Misawa, H.; Sakuragi, H.; Tokumaru, K. Bull. Chem. Soc. Jpn. **1990**, 63, 347.