Remarkable Enhancements of Isomerization and Oxidation of Radical Cations of Stilbene Derivatives Induced by Charge-Spin Separation

Sachiko Tojo, Kazuhiro Morishima, Akito Ishida, Tetsuro Majima,* and Setsuo Takamuku*

The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Zbaraki, Osaka 567, Japan

Received May 1, 1995

As typical reactions of radical cations of aromatic olefins, *cis (c)-trans (t)* isomerization, dimerization, and addition of a nucleophile are well-known.¹ However, factors which control the relative rates of these reactions are unclear. No unimolecular *c-t* isomerization occurs in stilbene radical cation (St^{+}) ,² while dimerization³ of St⁺⁺ with St occurs with the rate constant of $k_d = (3.5 3.9) \times 10^8$ M⁻¹ s^{-1 3b,c} to yield a π -dimer radical cation $(\pi$ -St₂⁺⁺) which converts to a σ -dimer radical cation (σ - St_2^{*+}) decomposing to t -St⁺⁺ and St as final products.^{3c} It is reported that *t*-St⁺⁺ reacts with superoxide molecule⁴ at the rate constant of $k_{so} = 1.9 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ near to the diffusion rate constant,4c while *t-St'+* has little reactivity toward O_2 .^{3a,4,5} On the other hand, we have found that both unimolecular *c-t* isomerization and oxidation of **St'+** derivatives substituted with a p-methoxyl group $(p\text{-}CH_3O)$, as an electron-donating substituent, proceed with the rate constants of $k_i = 4.5 \times 10^6 - 1.4 \times$ 10^7 s⁻¹ and $k_{\text{O}_2} = (1.2-4.5) \times 10^7$ M⁻¹ s⁻¹, respectively (Scheme 1). On the basis of the two types of reactions $(c-t)$ isomerization and oxidation) of eight $St⁺$ derivatives $(RCH=CHC_6H_5: 1, R = C_6H_5; 2, R = 4-CH_3C_6H_4; 3, R =$ $4-\text{CH}_3\text{OC}_6\text{H}_4$ (= An); **4**, $R = 2,4-\text{(CH}_3\text{O})_2\text{C}_6\text{H}_3$; **5**, $R = 3,4-\text{C}$ $(CH_3O)_2C_6H_3$; **6**, **R** = 3,5- $(CH_3O)_2C_6H_3$; **7**, AnCH=C- $(CH₃)C₆H₅$; **8**, AnCH=CHAn),⁶ it is found that separation and localization of positive charge and an unpaired electron play an important role in increasing the reac-

 (6) *c*- and $t-2-6$ were prepared by the Wittig reaction.

tivities and that the reactivities of radical cations in solution are explained in terms of distonic radical cat $ions.7.8$

The reactions of radical cations **1*+-&+** were investigated using a pulse radiolysis technique in 1,2-dichloroethane (DCE) at room temperature.⁹ The transient absorption spectra immediately after the electron pulse were assigned to c - and t -1⁺⁺-8⁺⁺ formed from the capture of the hole generated in the initiation step (Table 1). *c*and *t-2'+-8''* show two typical absorption bands in the range of 400-600 and 700-1000 nm assigned to $D_2 \leftarrow$ D_0 and $D_1 \leftarrow D_0$ transitions, respectively, similarly to **^l'+.'O** However, the absorption peaks of both shorter and longer wavelength bands of **3+-3-** and *8'+* shift to longer wavelengths with higher intensities than those of 1^+ (Table 1). *c-6+* shows the absorption peak with extremely low intensity similar to that of 1,3-dimethoxybenzene radical cation.¹¹

The rate constants of unimolecular *c-t* isomerization (k_i) were calculated from the formation of t -1⁺⁺-8⁺⁺ bands at the absorption peaks of D_2 (λ_{max}) at 5 mM of c-1-8 where unimolecular *c -t* isomerization was little affected by dimerization of $c-1^-$ - 8^+ and $c-1-8$ (Table 1). The rate constants of dimerization (k_d) were measured from the dependence of the decay of $1^{+}-8^{+}$ bands at λ_{max} on the concentration of $1-8$ $(5-100$ mM), while the rate constants of oxidation *(ko,)* were obtained from the dependence of the decay of *c-* and **t-l*+-&+** bands on the concentration of O_2 (2-14 mM). These rate constants thus obtained are summarized in Table 1.

Unimolecular *c-t* isomerization was observed in *c-3'+-* 5^{+} and c - 8^{+} with p -CH₃O ($k_i = 4.5 \times 10^6$ -1.4 $\times 10^7$ s⁻¹), but not in $c-1$ ⁺⁺, $c-2$ ⁺⁺, and $c-6$ ⁺⁺ without p -CH₃O. No isomerization or $k_i \leq 10^6$ s⁻¹ was observed in *c*-7⁺⁺ with p -CH₃O and a methyl substitution on the olefinic carbon. The oxidation with O_2 was also observed in $t-3^{++}-5^{++}$ and t -7⁺⁺ with p -CH₃O (k_{O_2} = (1.2-4.5) × 10⁷ M⁻¹ s⁻¹), but not in $c-1$ ⁺⁺, $c-2$ ⁺⁺, and $c-6$ ⁺⁺ without p-CH₃O. No oxidation or k_{O_2} < 10⁶ M⁻¹ s⁻¹ was observed in *t*-8⁺⁺ with two p -CH₃O. The dimerization was observed in $1^{++}-3^{++}$ and $t-6$ ^{*} $(k_d = (2.0-4.3) \times 10^8 \text{ M}^{-1} \text{ s}^{-1})$.¹² Since the dimerization occurs even in $3^{\circ+}$ with the large k_d value but not in **4",** *5+,* and *7'+,* it is suggested that the dimerization involves initial formation of a π -complex with overlapping of two benzene rings and that the π -complex formation

 (1) (a) Fox, M. A., Chanon, M., Eds. *Photoinduced Electron Transfer*; Elsevier: Amsterdam, The Netherlands, **1988.** (b) Mattes, **S.** L.; Farid, S. In *Organic Photochemistry;* Padwa, **A,,** Ed.; Marcel Deckker: New York, **1983;** Vol. **6,** pp **233-326.** (c) Lewis, **F.** D. In *Photoinduced Electron Transfer;* Fox, M. **A.,** Chanon, M., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; Part C, Chapter 4. (d) Yoon, U. C.; Mariano, P. S. *Acc. Chem. Res.* 1992, 25, 233. (e) Parker, V. D. *Acc. Chem. Res.* 1984, 17, 243. (f) Eberson, L. *Adv. Phys. Org. Chem.* 1982, 18, 79. (g) Schepp references cited therein.

⁽²⁾ (a) Lewis, F. D.; Bedell, **A.** M.; Dykstra, R. E.; Elbert, J. E.; Gould, I. R.; Farid, S. *J. Am. Chem.* SOC. **1990,112,8055** and references cited therein. (b) Kuriyama, Y.; Arai, T.; Sakuragi, H.; Tokumaru, K. *Chem.*

Phys. Lett. 1990, 173, 253.

(3) (a) Lewis, F. D.; Petisce, J. R.; Oxman, J. D.; Nepras, M. J. J.

Am. Chem. Soc. 1985, 107, 203. (b) Kuriyama, Y.; Sakuragi, H.;

Tokumaru, K.; Yoshida, Y.; Tagawa, S. Bull. Chem. Soc. Jpn.

^{958.&}lt;br> (4) (a) Eriksen, J.; Foote, C. S. *J. Am. Chem. Soc.* **1980**, *102*, 6083.
(b) Yamashita, T.; Tsurusako, T.; Nakamura, N.; Yasuda, M.; Shima, K. *Bull. Chem. Soc. Jpn.* **1993**, 66, 857. (c) Tsuchiya, M.; Ebbesen, T.
W.; Nishimura, Y.; Sakuragi, H.; Tokumaru, K. *Chem. Lett.* **1987**, 2121.
(d) Konuma, S.; Aihara, S.; Kuriyama, Y.; Misawa, H.; Akaba, R.;
Sakuragi,

⁽⁵⁾ Tokumaru and his co-workers proposed that the oxidation
depends on the structures of olefins, since the rate constant of k_{0_2}
varied in the wide range, $k_{0_2} = 1.3 \times 10^6$, 7.2×10^5 , and 2.6×10^8 M⁻¹
s thracene in DMSO.^{4c}

⁽⁷⁾ (a) Yates, B. F.; Bouma, W. J.; Radom, L. *Tetrahedron* **1986,22, 6225** and references cited therein. (b) Hammerum, S. *Mass Spectrom. Rev.* **1988, 7, 123.** *(c)* Stirk, K. M.; Kiminkinen, L. K. M.; Kenttamaa, H. I. *Chem. Reu.* **1992,92, 1649.**

⁽⁸⁾ Tojo, S.; Toki, S.; Takamuku, S. J. *Org. Chem.* **1991,** 56, **6240.** (9) The sample solutions was irradiated with an 8-ns pulse of 28 MeV electrons.³

⁽¹⁰⁾ Shida, T.; Hamill, W. *J. Chem. Phys.* **1966,44, 2375.**

⁽¹¹⁾ Takamuku, **S.;** Komitsu, S.; Toki, S. *Radiat. Phys. Chem.* **1989,**

^{34, 553.} (12) The dimerization was also observed in *t-8'+* on the basis of electrochemical measurements, although $k_d = (3.4-5) \times 10^3$ M⁻¹ s⁻¹ was too small to be observed under the present conditions in this study. Steckhan, E. *J. Am. Chem. SOC.* **1978, 100, 3526.** Burgbacher, **G.;** Schaefer, H. J. *J. Am. Chem.* SOC. **1979, 101, 7590.**

Table 1. Absorption Peak of D₂ of $1^{+}-8^{+}$ in DCE and Rate Constants for the Reactions of $1^{+}-8^{+}$ in Pulse Radiolyses **in DCE at Room Temperaturea**

			cis(c)			trans(t)			
stilbene	$\lambda_{\rm max}/\rm nm$	ϵ_{λ} /M ⁻¹ cm ⁻¹	k/s^{-1}	$k_{\rm d} / {\rm M}^{-1}~{\rm s}^{-1}$	$k_{\rm O}/\rm M^{-1}~s^{-1}$	$\lambda_{\rm max}/\rm nm$	ϵ_{λ} /M ⁻¹ cm ⁻¹	$k_{\rm d}$ /M ⁻¹ s ⁻¹	$k_{\text{O}}/\text{M}^{-1}\,\text{s}^{-1}$
1^{++}	515	18 000		3.9×10^{8}	c	480	65 000	3.9×10^{8}	c.
2^{+}	520	30 900		3.4×10^{8}	c	490	80 900	4.3×10^8	c.
3^{+}	530	13 200	4.5×10^6	2.0×10^8		470.500	39 200, 74 800	3.0×10^8	4.5×10^7
4^{*+}	530		1.3×10^7			480	10 5000	C.	4.0×10^7
5^{+}	540		1.4×10^{7}	d.		480	84 600	c	1.2×10^7
6^{++}	520	3270			c	460.510	24 500, 20 800	3.4×10^8	c
$7+$	450, 500	8820, 9710	Ъ		2.5×10^7	440, 490	18 400, 29 400	c.	2.8×10^7
8^{+}	500.570	d	5.5×10^6	d		480, 540	33 100, 76 000	c	c.

^{*a*} The absorption peaks of D_2 (λ_{max}) of $1^{++}-8^{+}$ in DCE. The molar absorption coefficients (ϵ_i) were estimated from the optical density at λ nm and the optical length of 1 cm with assumption of concentration of 8×10^{-6} M for $2^{++}-8^{++}$ which was measured for t -1⁺¹ on the basis of $\epsilon_{480} = 6.5 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$ in DCE. k_i , calculated from the formation of t^+ at 5 mM of $c \cdot 1 - 8$; k_d , measured from the dependence of the decay of **1'+-8'+** on the concentration of **1-8;** *KO,,* obtained from the dependence of the decay of **c.+** or *t'+* on the concentration of O_2 . ^{*b*} k_1 < 10⁶ s⁻¹ since the formation of $t^{\star+}$ was not observed. c k_d and k_{O_2} < 10⁶ M⁻¹ s⁻¹ since no dependence of decay of $c^{\star+}$ or $t^{\star+}$ on the concentration of c , t , or O_2 . d Not determined. 450, 500 8820, 9710 $\frac{1}{2}$, 55 \times 10⁶ $\frac{1}{2}$, 55 \times 10⁶ $\frac{1}{2}$, 55 \times 10⁶ $\frac{1}{2}$, 420, 480, 540 33 100, 76 000

sorption peaks of D₂(λ_{max}) of 1⁺⁺-8⁺⁺ in DCE. The molar absorption coeffi

is inhibited by steric hindrance of substituents on benzene rings and olefinic carbons.

On the basis of these experimental results of *k,* and k_{O_2} it is clearly shown that $p-\text{CH}_3\text{O}$ as an electrondonating substituent on the benzene ring changes remarkably the reactivities of $1^{+}-8^{+}$. It is considered that a resonance structure **(B)** as shown in Scheme 2 for *c-3'+* contributes to the electronic states of *3'+-5'+, 7'+,* and *8'+* with p-CH3O. Positive charge is more localized on oxygen of p -CH₃O, while the unpaired electron density is more localized on the olefinic β -carbon in $3^{++}-5^{++}, 7^{++},$ and 8^+ with $p\text{-CH}_3\text{O}$ (charge-spin separation) than in 1^+ and 2^{*+} without p-CH₃O. Alternatively, oxygen of p-CH₃O and the olefinic β -carbon participate considerably to SOMO of *3'+-5'+, 7'+,* and *8'+.* Since the energy barrier for the unimolecular $c-t$ isomerizations decreases with increasing the single bond character in the central $C=C$ double bond, the reactivity of the isomerization increases in *3'+-5'+, 7'+,* and *8'+.* Since unpaired electron density is localized on the olefinic β -carbon, the reactivity of the oxidation increases in *3'+-5'+, 7'+,* and *8'+.* Consequently, p-CH30 in *3'+-5'+, T*,* and *8'+* causes enhancement of the reactivity due to the charge-spin separation, like distonic radical cations carrying spatially separated positive charge and an unpaired electron.

Product analyses were performed in γ -radiolyses of c -3-5 in Ar- or O_2 -saturated DCE at room temperature.¹³ $t-3-5$ were formed in high yields in *y*-radiolyses of $c-3-5$ in Ar-saturated DCE, and 4-methoxybenzyl phenyl ketone was regioselectively formed in y-radiolysis of *t-3* in $O₂$ -saturated DCE, although the details will be published elsewhere. These results are consistent with the order of k_i and k_{O_2} and the charge-spin separation induced by p-CH3O in **3"-5'+,** *7'+,* and *8'+.*

The unimolecular $c-t$ isomerization of c -7⁺⁺ or oxidation of *t*-8⁺⁺ did not occur, although both 7^+ and 8^+ have p -CH₃O. These are possibly explained in terms of steric hindrance for the twisting and spin density on the olefinic carbon, respectively. Methyl substitution on the olefinic carbon in *c-7'+* provides more steric hindrance for the twisting about the $C=C$ double bond than in $c-3$ ^{*}. The density of unpaired electron on the olefinic carbon in *8'+* with two symmetrical p-CH30 is lower than in **3'+.** The unimolecular $c-t$ isomerization or the oxidation of c - 6 ⁺ did not occur. It should be noted that $c - 6$ ⁺⁺ has the absorption peak at 520 nm with extremely low intensity similar to that of 1,3-dimethoxybenzene radical cation. These results may be interpreted by a twisted structure with the 3,5-dimethoxyphenyl ring rotating against the C=C double bond, since a structure **(B)** is not possible in c -6^{**} having m-CH₃O.

Tokumaru and his co-workers reported $k_i = 3 \times 10^5$ s^{-1} for radical cations of $c - 4$, 4'-dibromostilbene $(c - 9^{*})$ and $c-4,4'$ -dimethylstilbene $(c-10^{+})$ and $k_1 > 3 \times 10^5$ s⁻¹ for $c-8$ ^{++ 2b} and proposed that $c-t$ isomerization might be accelerated by reduction of the electron density on the unsaturated linkage induced by the substituents on the basis of lower coupling constants of the a-H of *t-9* and *t*-10 having *p*-substituents than that of *t*-1 itself in ESR studies.14 They also proposed that the oxidation depends on the structures of olefins, since the k_{0} values varied in the over a wide range.^{4c,d} The k_i values for $c - 3^{*+} - 5^{*+}$ and c -8⁺⁺ are 1 or 2 orders larger than those for c -9⁺⁺ and c -10^{+ 2b} as shown in Table 1. Remarkable enhancements of the isomerization by p -CH₃O are explained by chargespin separation in $c - 3^{+} - 5^{+}$ and $c - 8^{+}$.

The present work is the first example to clarify that the reactivities of stilbene radical cations are controlled predominantly by charge-spin separation induced by p -CH₃O, and it is suggested that distonic radical cations can be acceptable to explain reactivities of radical cations even in solution.

Acknowledgment. This work was partly supported by a Grant-in-Aid (Nos. 05453121 and 07455341) from the Ministry of Education, Science and Culture of Japan.

J09507981

⁽¹³⁾ γ -Radiolyses of the sample solutions were performed by a $^{60}\mathrm{Co}$ *y* **source;** concentration of substrate, **10** mM.3C

H.; Tokumaru, **K.** *Bull. Chem. SOC. Jpn.* **1990, 63, 347. (14)** Bonazzola, L.; Michaut, J.-P.; Roncin, J.; Misawa, H.; Sakuragi,